Admissions
Madanapalle Institute of Technology & Science is now MITS Deemed to be University.
Dr. Sanjaya Brahma

Qualification : Ph.D. (MRC-IISC, Bangalore)

Designation : Research Asst. Professor

Details of Educational Qualification:

Course Specialization Group College Name/University Year of Passing
Post Doctoral Fellow Materials Science and Engineering Materials Science and Engineering National Cheng Kung University, Tainan, Taiwan 1st Aug 2023 – 31st July 2025
Post Doctoral Fellow Hierarchical Green-Energy Materials Hierarchical Green-Energy Materials National Cheng Kung University, Tainan, Taiwan, 1st June 2018 – 31st July 2023
Post Doctoral Fellow Materials Science and Engineering Materials Science and Engineering National Cheng Kung University, Tainan, Taiwan 1st Feb 2016 – 31st May 2018
Post Doctoral Fellow Physics Physics National Cheng Kung University, Tainan, Taiwan 1st Feb 2014 – 31st Jan 2016
Post Doctoral Fellow Materials Science and Engineering Materials Science and Engineering National Cheng Kung University, Tainan, Taiwan 1st Augt 2013 – 31st Jan 2014
Post Doctoral Fellow Micro/Nano Science and Technology Micro/Nano Science and Technology National Cheng Kung University, Tainan, Taiwan 16 Nov 2011 - 31 July 2013
CSIR Research Associate Physics Physics Materials Research Centre, Indian Institute of Science (IISC) Bangalore, India. 24th June 2009 – 15 Nov 2011
Ph.D. Physics Physics Materials Research Centre, Indian Institute of Science (IISC), Bangalore, India 2010
M.Tech. Solid State Technology Solid State Technology Indian Institute of Technology-Kharagpur, India 2004
M.Sc. Physics & Electronic M.Sc. Utkal University, Odisha, India 2000
B.Sc. Physics B.Sc. Utkal University, Odisha, India 1998

 

List of Publications

S.No Title of the Paper Full Details of Journal Name / Conference Name, Volume number, page number, Date
1 Crystal structure evolution of piezoelectric Fe-doped ZnO film by magnetron co-sputtering technique Condens. Matter, 10, (2025) 6 (1-11).
2 Defect induced crystal lattice disorder and its effect on the electron-phonon coupling in Fe doped ZnO thin films J. Phys. Chem. Solids 190 (2024) 111999. I.F. – 4.
3 Zn dots coherently grown on Si(111) as the seed and buffer layer for ZnO thin film: Mechanism, in-situ analysis and simulation Journal of Vacuum Science & Technology A 40, (2022) 063403. I.F. = 3.234
4 Competitive effect of dopant concentration and the size of the nanorods over the electron phonon coupling in Cd doped ZnO nanorod arrays J. Phys. Chem. Solids, 148 (2021) 109728 (1-10). ISSN: 0022-3697, Elsevier, I.F. – 4.38
5 Microwave irradiation assisted rapid growth of ZnO nanorods over electrically conducting substrate Materials Letters, 264 (2020) 127370 (1-4), ISSN No- 0167-577X, Elsevier, I.F. – 3.42.
6 Microstructure and piezoelectric properties of hexagonal MgxZn1-xO/ZnO films at lower Mg compositions Thin Solid Films 690 (2019) 137459(1-8), Elsevier, I.F – 2.03.
7 Strong correlation between optical properties and mechanism in deficiency of normalized self-assembly ZnO nanorods Sci. Reports, 9, 905 (2019). ISSN 2045-2322, Nature Publishing Group. I.F. – 3.99.
8 Migration Energy Barriers for the Surface and Bulk of Self-Assembly ZnO Nanorods Nanomaterials 8 (10) (2018) 811. MDPI Journals, I.F. = 4.03.
9 Epitaxial Zn quantum dots coherently grown on Si(111): growth mechanism, nonlinear optical and chemical state analyses J. Phys. D: Applied Physics, 50 (2017) 175301. ISSN: 0022-3727, IOP publications, I.F. = 2.37.
10 Microwave irradiation assisted, one pot synthesis of simple and complex metal oxide nanoparticles: (A general approach) J. Phys. D: Appl. Phys., 50 (2017) 40LT03 (1-5). IOP publications, I.F. = 2.37. 0022-3727
11 Enhancement of the Piezoelectric coefficient in hexagonal MgxZn1-xO films at lower Mg compositions J. Alloys Compd. 728 (2017) 1248-1253. Elsevier, I.F – 3.77.
12 Cu doped ZnO nanorods with controllable Cu content by using single metal organic precursors and their photocatalytic and luminescence properties J. Alloys Comp. 691 (2017) 936-945, Elsevier, I.F – 3.77.
13 Yellow-red luminescence in ZnO nanoparticles synthesized from zinc acetylacetonate phenanthroline Mater. Lett. 164 (2016) 235-238. ISSN No- 0167-577X, Elsevier, I.F. – 2.57.
14 Ultraviolet Photodetectors Based on MgZnO Thin Film Grown by RF Magnetron Sputtering Thin Solid Films 620 (2016) 170-174. Elsevier, I.F – 1.87.
15 Crystal orientation dynamics of collective Zn dots before preferential nucleation Sci. Reports, 5 (2015) 12533 (1-10). Nature Publishing Group. I.F. – 5.22.
16 Self-assembled ZnO nanoparticles on ZnO microsheet: ultrafast synthesis and tunable photoluminescence properties J. Phys. D: Applied Physics, 48 (2015) 225305. IOP publications, I.F. = 2.77. 0022-3727
17 Enhancement in the structure quality of ZnOnanorods by diluted Co dopants: analyses via optical second harmonic generation J. Appl. Phys. 117 (2015) 084315(1-8). American Institute of Physics (AIP), I.F. – 2.10.
18 Facile, low temperature growth of vertically aligned ZnO nanorods over a disordered substrate Mater. Lett. 140 (2015) 177-179. ISSN No- 0167-577X, Elsevier, I.F. – 2.43.
19 Effect of substrates and surfactants over the evolution of crystallographic texture of nanostructured ZnO thin films deposited through microwave irradiation Thin Solid Films, 593 (2015) 81-90. Elsevier, I.F – 1.76. ISSN: 0040-6090
20 Flower-like ZnO nanorod arrays grown on HF-etched Si (111): constraining relation between ZnO seed layer and Si (111) Mater. Res. Exp. 2 (2015) 115003 (1-10). IOP Publications, I.F. – 0.96. ISSN: 2053-1591
21 Preparation of zinc oxide coatings by using newly designed metal-organic complexes of Zn: effect of molecular structure of the precursor and surfactant over the crystallization, growth and luminescence J. Alloys Compd. 584 (2014) 331-338. Elsevier, I.F – 2.99. ISSN:0925-8388
22 Symmetrical dipole contribution from planar defects on m-plane ZnO epitaxial films Current Nanoscience, 10 (6) (2014) 883. Bentham Science Publishers, I.F – 1.09.
23 Low temperature and rapid deposition of ZnOnanorods on Si(100)substrate with tunable optical emissions Mater. Chem. Phys, 140 (2013) 634-642. Elsevier, I.F -2.12. ISSN: 0254-0584
24 Contrast in luminescence characteristics (intense UV to bright visible light) of ZnO nanostructures with the variation in microstructure Phys. Status Solidi A, 210 (2013) 2600-2610, Wiley international, I.F. – 1.52. ISSN: 1862-6319
25 Effect of Indium concentration on luminescence and electrical property of Indium doped ZnO nanowires Thin solid films. 549 (2013) 165. Elsevier, I.F – 1.86.
26 Surfactant free, non-aqueous method, for the deposition of ZnO nanoparticle thin films on Si(100) substrate with tunable ultraviolet (UV) emission Current Nanoscience, 9(3) (2013) 346-350. Bentham Science Publishers, I.F – 1.42. ISSN: 1573-4137.
27 An Efficient and Environment Friendly Universal White Light Emitting ZnO Nanophosphors Current Nanoscience. 8(6) (2012) 914-918. Bentham Science Publishers, I.F – 1.35. ISSN 1573-4137.
28 Shape transformation of ZnO nanorods /nanotubes at low temperature Current Nanoscience, 8 (2012) 156-160.Bentham Science Publishers, I.F – 1.35.
29 Microwave irradiation-assisted method for the deposition of adherent oxide films on semiconducting and dielectric substrates Thin Solid Films, 518 (2010) 5905-5911. Elsevier, I.F – 1.93 (2010). ISSN: 0040-6090 (SCIE).
30 Rapid growth of nanotubes and nanorods of würtziteZnO through microwave-irradiation of a metal-organic complex of zinc and a surfactant Bull. Mater. Sci. 33(2) (2010) 89-95. Springer, I.F. – 0.94 (2010). ISSN 0250-4707 (SCIE)
31 Cd doped ZnO nanorods for efficient room temperature NH3 sensing Materials Chemistry and Physics, 294 (2023) 127053 (1-10). I.F. = 4.778
32 Cu-doped p-type ZnO nanostructures as unique acetone sensor at room temperature Applied Surface Science, 564 (2021) 150351. I.F – 7.39.
33 The optical response of ZnO nanorods induced by oxygen chemisorption and desorption Sensors & Actuators: B., 259 (2018) 900-907. I.F – 6.39.
34 Enhanced sensitivity and selectivity of H2S sensing through controlled Ni doping into ZnO nanorods by using single metal organic precursors Sensors & Actuators: B., 273, (2018) 1278-1290. I.F – 6.39.
35 Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output voltage/current in Y doped ZnO thin films Materials Science in Semiconductor Processing 146 (2022) 106703. I.F. = 4.64
36 Synergistic effect of Ga doping and Mg alloying over the enhancement of strain sensitivity of Ga doped MgZnO pressure sensor Nanoscale Advances, 3 (2021) 3909–3917. I.F – 5.59
37 Review on ZnO-based piezotronics and piezoelectric nanogenerators: Aspects of piezopotential and screening effect" J. Phys. Mater. 4 (2021) 044011. I.F. = 5.84.
38 Fabrication of flexible UV-B photodetectors made of MgxZn1-xO films on PI substrate for enhanced sensitivity by piezophototronic effect Applied Materials Today 20 (2020) 100705 (1-10). I.F. – 10.04.
39 Recent progress in microstructure development of inorganic one-dimensional nanostructures for enhancing performance of piezotronics and piezoelectric nanogenerators Nano Energy, 55 (2019) 1-21. I.F – 16.60. (D) Lithium ion batteries
40 Post-Annealing Induced Interdiffusion Layer Enhancing the Stability and Electrochemical Properties of LiCoO2 Thin Film Battery ChemNanoMat (2025) 11, e202500057 (1-8). I.F. =2.6.
41 One pot, bottom up synthesis of SiO2 quantum dots and reduced graphene oxide (rGO) nanocomposite as anode material in lithium ion battery C-J. Carbon Res. 11 (2025) 1, 23 (1-8). I.F. = 3.9.
42 Promoting stability and fast-charging capability of LiCoO2 thin-film battery achieving 500 Wh/kg energy density through MgO co-sputtering Materials Today: Energy, 40 (2024) 101486 (1-12). Impact factor = 9.3.
43 Methylboronic acid MIDA ester as an effective additive in electrolyte to improve cathode electrolyte interlayer performance of LiNiCoAlO2 electrode Scientific Reports, 13, 10025 (2023). I.F. = 4.6.
44 Enhanced capacity and cyclability of Si@NiSi2 nanocomposite anodes fabricated by facile electroless Ni plating J. Phys. Chem. C 127, (2023) 169−176. I.F. = 4.177
45 Combined effects of citric acid and ascorbic acid used as low temperature (~150°C) surface modifiers to enhance the cyclability of an Si anode in an Li ion battery J. Electrochem. Energy Convers. Storage, 20 (2023) 011001(1-9). I.F = 2.323
46 Mo doped SnO2-reduced graphene oxide (RGO) nanocomposite as high capacity and superior rate capability anode materials in lithium ion batteries J. Electrochem. Energy Convers. Storage, 19 (2022) 011006 (1-7). ISSN: 2381-6872, ASME Journal, I.F. – 2.32.
47 Room temperature synthesis of SiOx/rGO composite as anode material in lithium ion battery Materials Letters, 299 (2021) 130043. ISSN No-0167-577X, Elsevier, I.F. – 3.57.
48 The Petroleum Waste Hydrocarbon Resin as Carbon Source Modified on Si Composite as superior Anode Material in Lithium Ion Batteries Mater. Chem. Phys. 259 (2021) 124011(1-11). ISSN: 0254-0584, Elsevier, I.F. – 4.77.
49 Enhanced capacity and excellent rate capability Mn3O4 microsheet-reduced graphene oxide (rGO) nanocomposite as anode material in lithium-ion batteries Appl. Surf. Sci. 505 (2020) 144629. ISSN: 0169-4332, Elsevier, I.F – 6.70.
50 Reduced graphene oxide-SnOx (x=0,1,2) nanocomposite as high performance anode material for lithium-ion batteries J. Alloys Compd. 818 (2020) 152889 (1-11). ISSN: 0925-8388, Elsevier, I.F – 5.31.
51 Multi-layer graphene/ SnO2 nanocomposites as negative electrode materials for lithium-ion batteries J. Electrochem. Energy Convers. Storage, 17 (2020) 031003 (1-7), ISSN: 2381-6872, ASME Journal, I.F. – 2.01.
52 Synthesis of self-assembled Hollow-Sphere ZnO/rGO Nanocomposite as Anode Materials for Lithium-Ion Batteries Int. J. Electrochem. Sci., 14 (2019) 3727 – 3739. Elsevier, I.F – 1.57.
53 Facile, low temperature synthesis of SnO2-RGO nanocomposite as negative electrode materials for lithium-ion batteries Appl. Surf. Sci. 413 (2017) 160-168. Elsevier, I.F – 4.43
54 Synthesis of MnOx/reduced graphene oxide nanocomposite as an anode for lithium-ion battery Ceram. Int. 43 (2017) 50-54. Elsevier, I.F -3.05. (E) Water splitting
55 MOF-derived molybdenum carbide-copper as an electrocatalyst for the hydrogen evolution reaction Journal of Alloys and Compounds Communications 3 (2024) 100027.
56 Effect of Mo-addition over a large enhancement of the hydrogen evolution reaction in WC/rGO nanocomposite Materials Letters 341 (2023) 134238. I.F. = 3.57.
57 Molybdenum carbide (Mo2C) and reduced graphene oxide (rGO) nano-composites as an efficient electrocatalyst for water splitting Materials letters 316 (2022) 131934. I.F. = 3.57.
58 MoS2-Carbon Interoverlapped Structures as Effective Electrocatalyts for the Hydrogen Evolution Reaction Nanomaterials, 10 (2020)1389 (1-13). MDPI Journals, I.F. = 5.07.
59 Atmospheric Air Plasma Treated SnS Films: An Efficient Electrocatalyst for HER Catalysts 8 (10) (2018) 462. MDPI publishers, I.F.= 3.44.
60 SnSx (x=1,2) nanocrystals as effective materials for photoelectrochemical water splitting Catalysts, 7 (2017) 252 (1-12). MDPI publishers, I.F. = 3.46.
61 MoS2-MoO2 composite electrocatalysts by hot-injection method for hydrogen evolution reaction Ceram. Int. 43(1) (2017) s621-s627. Elsevier, I.F. = 3.05.
62 Synthesis and characteristics of layered SnS2 nanostructures via hot injection method J. Cryst. Growth. 468 (2017) 162-168, Elsevier, I.F. – 1.74.
63 Synthesis, characterization and magnetic properties of hybrid complexes diaquabis (acetylacetonato κ-O, O’) [nickel (Π)/zinc (Π)] as solid metalorganic precursor Applied Organometallic Chemistry 31(11) (2017) e3746 (1-12), Wiley international, I.F. – 3.58.
64 Synthesis and characterization of Bis (acetylacetonato κ-O, O') [zinc (II)/copper (II)] hybrid organic-inorganic complexes as solid metal organic precursor Dalton Transactions, 44 (2015) 7982, RSC publications, I.F. = 4.17.
65 Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: synthesis, spectroscopic characterization, and thermal analysis J. Mol. Struct. 1101(2015) 41-49. Elsevier, I.F. – 1.78. ISSN: 0022-2860
66 New metal-organic precursors for MOCVD applications: synthesis, characterization, crystal structure and thermal properties of mixed-ligand Mg(II) complexes J. Mol. Struct. 1035 (2013) 416-420. Elsevier, I.F. – 1.599. ISSN: 0022-2860
67 bis(acetylacetonato - k2, O, O') (pyridine-kN) Zinc(II) ActaCrystallogr., Sect. E: Struct. Rep. Online, 67 (2011) m819. IUCR, I.F.-0.347.
68 Adducts of bis(acetylacetonato)-zinc(II) with 1,10-phenanthroline and 2,2' – bipyridine, Acta Cryst. C, 64 (2008) m140–m143. IUCR, I.F. – 0.56 (2008). ISSN: 2053-2296 (SCIE).
69 Electrochemical etching of the CuIn0.7Ga0.3Se2 absorber films prepared by non‐vacuum process Journal of Alloys and Compounds 1010 (2025) 177995 (1-15). I.F. = 5.8.
70 Synthesis of Tungsten Bronze by a solution-based chemical route and the NIR Shielding Properties of Tungsten Bronze thin films Applied Physics A, 126 (2) (2020) 98. ISSN - 0947-8396, Springer, I.F. – 2.58.
71 Effects of annealing on thermochromic properties of W-doped vanadium dioxide thin films deposited by electron beam evaporation Thin Solid Films, 644 (2017) 52-56. Elsevier, I.F – 1.93.
72 The evolution of restructure and defects in the implanted Si surface: inspecting by reflective second harmonic generation Appl. Surf. Sci., 388 Part A (2016) 517-523, Elsevier, I.F – 3.38. ISSN: 0169-4332
73 The effect of high concentration of phosphorus in aluminum-induced crystallization of amorphous silicon films Thin Solid Films 618 Part A (2016) 50-54, Elsevier, I.F – 1.87.
74 Stabilized copper plating method by programmed electroplated current: Accumulation of densely packed Cu grains in the interconnect Appl. Surf. Sci. 388 Part A (2016) 228-233, Elsevier, I.F – 3.38.
75 Platinum containing amorphous hydrogenated carbon (a-C:H/Pt)thin films as selective solar absorbers Appl. Surf. Sci. 316 (2014) 398. Elsevier, I.F – 2.71.
76 Characterization of electrochromic tungsten oxide films from electrochemical anodized RF sputtered tungsten films Ceramic International, 39 (2013) 4293. Elsevier, I.F -2.08.
77 Structural, thermal and electrical property of Polycrystalline LaLiMo2O8 New Journal of Glass and Ceramics, 2 (2012) 7. Scientific Research Publishing, I.F. – 1.18 (based on statistics of google scholar).
78 Structural, thermal and electrical characterization of NdLiMo2O8 electroceramics, using impedance spectroscopy J. Phys. Chem. Solids, 73 (2012) 357-362. Elsevier, I.F -1.52. ISSN: 0022-3697
79 AC impedance analysis of LaLiMo2O8 electroceramics Physica B: Condensed Matter, 355(1-4) (2005) 188-201.Elsevier, [I.F -0.796. ISSN:0921-4526 (SCIE).
80 Template-free, low temperature synthesis of binary and ternary metal oxide nanostructures Mater. Res. Soc. Symp. Proc. (USA) 1292 (2011) 99-104. (Poster presentation, 2nd December 2010, M.R.S. Meetings, Boston, USA).
81 Near white light emission from ZnO nanostructures Mater. Res. Soc. Symp. Proc. (USA), 1303 (2011) 15-20. (Poster presentation, 29th November 2010, M.R.S. Meetings, Boston, USA).
81 Surfactant-mediated synthesis of functional metal oxide nanostructures via microwave irradiation-assisted chemical synthesis Mater. Res. Soc. Symp. Proc. (USA) Vol. 1174 (2009) 75-80. (Oral presentation, 13th-17th April 2009, M.R.S. Meetings, Sanfrancisco, USA)

Book Chapters

  • S. Brahma, S.-C. Weng, J.-L Huang*, Chapter-11, Graphene-Metal oxide composite as anode materials in Li ion batteries, Advanced Materials Series, Cengiz Ozkan (ed.) Handbook of Graphene, Volume 4, Graphene Composite Materials: (2019) 323–352. John Wiley & Sons & Scrivener Publishing LLC. ISBN: 9781119469681. Date published -17 June 2019
  • S. Brahma, S.-C. Weng, J.-L. Huang*, Chapter-8, Metal oxide-reduced graphene oxide (MO-RGO) nanocomposite as high performance anode materials in Lithium ion batteries, Green Energy Materials Handbook, Ming-Fa Lin, Wen-Dung Hsu (ed.) (2019) 145-163, CRC press, Taylor and Francis group, ISBN 9781138605916 - CAT# K388566. Date published: 21 June 2019
  • S. Brahma, A. C. Lee, J.-L. Huang*, Chaper-8, Graphene as an anode material in lithium ion battery, Lithium-ion Batteries and Solar Cells: Physical, Chemical, and Materials Properties, (2021) 151-168, CRC press, Taylor and Francis group, ISBN 9780367686239. Date published: 18 January 2021.
  • S. Brahma, S.-C. Weng, C.-C. Chang, J.-L. Huang*, Chapter 9, Mn based oxide nanocomposite with reduced graphene oxide as anode material in Li-ion battery, Lithium-related batteries: Recent advances and remaining challenges, (2021), CRC Press Publisher, Taylor & Francis Group, ISBN 9781032203898. Date Published: March 10, 2022.
  • S. Brahma, J.-L. Huang*, Chapter 10, SnOx (x=0,1,2) and Mo doped SnO 2 nanocomposite as possible anode materials in lithium ion battery, Energy Storage and Conversion Materials: Properties, Methods, and Applications, (2022), CRC Press Publisher, Taylor & Francis Group, Accepted.