Dr. P. V. Chandrasekar

Qualification : Ph.D. (Chungnam National University)

Details of Educational Qualification:

Course Specialization Group College Name/University Year of Passing
Ph.D. Materials Engineering Materials Engineering Chungnam National University, Daejeon .S.Korea 2011
M.Sc. Physics M.Sc. Bharathiar University 2002
B.Sc. Physics B.Sc. Madurai Kamaraj University 2000

 

List of Publications

S.No Title of the Paper Full Details of Journal Name / Conference Name, Volume number, page number, Date
1 Aqueous-Phase Formation of Two- Dimensional PbI2 Nanoplates for High-Performance Self-Powered Photodetectors” Micromachines, 14(10), 1949, (2023). https://doi.org/10.3390/mi14101949
2 “Editorial: Recent developments in Si-based materials and devices” Frontiers in physics, 11, (2023). doi: 10.3389/fphy.2023.1272399
3 “Photoelectric properties of antimony selenide nanowires prepared by hydrothermal method” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 674,(2023) 131889. (IF:5.2) https://doi.org/10.1016/j.colsurfa.2023.131889
4 “Dramatic increase in SWIR detection for GeSn strip detector with graphene hybrid structure” Journal of Alloys and Compounds, 945, 169287 (2023). DOI:10.1016/j.jallcom.2023.169287 (IF:6.37)
5 “A review on III–V compound semiconductor short wave infrared avalanche photodiodes” Nanotechnology 33 222003 (2022).DOI: 10.1088/1361- 6528/ac5442 (Citation:1, IF: 3.87)
6 “Lead–halide perovskites for next-generation self-powered photodetectors: a comprehensive review” Photonic Research , 9 (6), 968-991 (2021).DOI: 10.1364/PRJ.418450 (Citation:33, IF:7.08)
7 “Fabrication of graphene: CdSe quantum dots/CdSnanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics” Nanotechnology, 32 (31) 315204 (2021).DOI: 10.1088/1361-6528/abf87a (Citation:6, IF: 3.872)
8 “Solution-Processed, Self- Powered Broadband CH3NH3PbI3 Photodetectors Driven by Asymmetric Electrodes” Advanced Optical materials, 8, 2000215 (2020).DOI: 10.1002/adom.202000215 (Citation:24, IF: 10.05)
9 “Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures” Journal of materials Science & technology, 68, 216-226 (2020)DOI:https://doi.org/10.1016/j.jmst.2020.06.047 (Citation:19, IF:10.319)
10 “CsPbI3nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors” Journal of materials Science & technology (2020). DOI: https://doi.org/10.1016/j.jmst.2020.07.049 (Citation:11, IF: 10.319)
11 “porous single wall carbon nanotube templates decorated with inorganic perovskite nanocrystals for flexible photodetectors” ACS Applied Nanomaterials, 3, 1, 459-467 (2020).DOI:https://doi.org/10.1021/acsanm.9b02051 (Citation:15, IF: 6.14)
12 Surface Engineering of All-Inorganic Perovskite Quantum Dots with Quasi Core−Shell Technique for High-Performance Photodetectors. Advanced materials &Interfaces n/a, (2020) 2000360.DOI:10.1002/admi.202000360 (Citation:14, IF:6.389)
13 “A facile method to synthesize two- dimensional CsPb2Br5 nano-/micro-sheets for high-performance solution- processed photodetectors” Journal of Alloys and compounds, 824, 153970 (2020).DOI: https://doi.org/10.1016/j.jallcom.2020.153970 (Citation:15,IF: 6.371)
14 “Flexible memristive device based on WSe2quantum dots sandwiched between two poly (methyl methacrylate) layers” IEEE Electron Device Letters ,40(7) 1088-1091, 2019 DOI:10.1109/LED.2019.2918701 (Citation:5, IF:4.187)
15 “Solution-phase, template-free synthesis of PbI2 and MAPbI3 nano/microtubes for high-sensitivity photodetectors” Nanoscale,11, 5188-5196,2019.DOI:10.1039/C9NR00452A (Citation:21, IF:8.307)
16 ” Highly flexible memristive devices based on MoS2quantum dots sandwiched between PMSSQ layers” Dalton Transactions, 48, 2422-2429, 2019,DOI: 10.1039/C8DT04593C. (Citation:14, IF: 4.56)
17 “One-step method to synthesize CH3NH3PbI3:MoS2nanohybrids for high-performance solution processed photodetectors in visible region” Nanotechnology 30 (2019) 085707 https://doi.org/10.1088/1361-6528/aaf608 (Citation:9, IF: 3.872)
18 “Interlayer of PMMA doped with Au nanoparticles for high-performance tandem photodetectors: a solution to suppress dark current and maintain high photocurrent” ACS Applied materials & Interfaces,12, 23, 26153–26160 (2020). DOI: 10.1021/acsami.0c04093 (Citation:20, IF:10.38)
19 ” Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors” Nanotechnology (2020) (Accepted).DOI: 10.1088/1361-6528/ab7de7(Citation:7, IF: 3.872)
20 “Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor” Nanotechnology,31,(2019) 105203.DOI:10.1088/1361- 6528/ab5a26 (Citation:12, IF: 3.872)
21 “All-solution-processed UV-IR broadband trilayer photodetectors with CsPbBr3 colloidal nanocrystals as carriers-extracting layer” Nanotechnology , 31 (16)165502(2019).DOI:http://iopscience.iop.org/10.1088/1361- 6528/ab667b (Citation:12, IF: 3.872)
22 “High Performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer” Nanotechnology, 30,465203(2019) 。DOI:10.1088/1361-6528/ab3b7a (Citation: 18, IF: 3.872)
23 ”structural, optical and photoconductivity characteritics of wet chemically grown flower like ZnOthinfilm nanostructures on SiO2/Si substrate” Journal of materials science: materials in electronics 28(19):1-6(2017) 10.1007/s10854-017-7290-y (Citation:2, IF:2.478)
24 “Enhanced field emission properties of Molybdenum disulphidenanosheets synthesized by hydrothermal method” Applied Surface science,389,1017-1022(2016) https://doi.org/10.1016/j.apsusc.2016.08.031 (Citation:80, IF: 6.707)
25 “One pot hydrothermal synthesis of graphene like MoS2nanosheets for high performance lithium ion batteries” RSC Advances, 5, 57666-57670 (2015).10.1039/C5RA07478A (Citation:30, IF: 4.036)
26 ”GaNnanorod synthesis on single wall carbon nanotube bundles via substrate confinement” CrysEnggComm,14, 2166- 2171(2012).10.1039/C2CE06557F (Citation:7, IF:3.545)
27 “Structural and Field Emission Properties of GaN–SWCNT nanocomposites” Journal of The Electrochemical Society,157 (12) J 415-J418 (2010).10.1149/1.3497352(Citation:3, IF: 4.316)
28 “A facile synthesis of CH3NH3PbBr3 perovskite quantum dots and their application in flexible nonvolatile memory” Applied Physics Letters, 110, 083102 (2017).https://doi.org/10.1063/1.4976709 (Citation:75, IF: 3.816)
29 “All-solution processed semi-transparent perovskite solar cells with silver nanowireselectrodes” Nanotechnology,27(9):095202 (2016).http://dx.doi.org/10.1088/0957-4484/27/9/095202 (Citation:40, IF: 3.872)
30 ” Inkjet-Printed photodetector arrays based on hybrid perovskite CH3NH3PbI3Micriwires” ACS Appl.Mater.Interfaces 9 (13), pp 11662–11668 (2017).DOI:10.1021/acsami.7b01379 (Citation:57, IF:10.38)
31 ”Solution-processed flexible blue organic light emitting diodes using graphene anode” Vacuum, 121, 70-74 (2015).https://doi.org/10.1016/j.vacuum.2015.07.020 (Citation:5, IF: 2.751)
32 “Ferroelectric, dielectric, and optical properties of Nd-substituted Bi4Ti3O12 nanoparticles synthesized by sol-gel method” Progress in Natural Science: Materials International. 26 (7) 528-532 (2016).https://doi.org/10.1016/j.pnsc.2016.11.001 (Citation:19, IF: 3.607)
33 “Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode” Applied surface science,369, 308-313(2016).10.1016/j.apsusc.2016.02.104 (Citation:20, IF:6.707)
34 “Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching” Scientific reports 5 : 9034-1-9034-7 (2015) | DOI: 10.1038/srep09034 (Citation:19, IF: 4.379)
35 “Transparent and flexible non volatile memory using poly (methylsilsesquioxane) dielectric embedded with cadmium selenide quantum dots” Jap, J, Appl,Phys, 53, 125001-1-12500-4 (2014).10.7567/jjap.53.125001 (Citation:10, IF: 1.491)
36 “ Effect of substrate on electroplated copper sulphide thin films” Journal of materials science: Materials in Electronics, 25 (12) 5338-5344(2015).10.1007/s10854- 014-2310-7(Citation:25, IF: 2.478)
37 “Growth and Characterization of Electroplated NiO Coatings” Journal of New Materials For Electrochemical Systems, 17 (3) 173-177(2014).10.14447/jnmes.v17i3.418 (Citation:0)
38 “Studies on Electrodeposited NiS Thin Films” Journal of New Materials For Electrochemical Systems, 17(3) 167 (2014).10.14447/jnmes.v17i3.417(Citation:3)
39 “Highly dispersed Cu(II) and Ni (II) catalysts covalently immobilized on imine modified silica for cyclohexane oxidation with hydrogen peroxide” RSC Advances, 4, 24820 (2014).10.1039/C4RA01960A (Citation:48, IF: 4.036)
40 ”Organic–inorganic hybrid catalysts containing newSchiffbase for environment friendly cyclohexaneoxidation” RSC Advances, 4, 42816-42824, (2014).10.1039/C4RA08303B (Citation:26, IF: 4.036)
41 “Growth and characterization of GaN on sapphire and porous SWCNT using single molecular precursor” Kor. J. Mater. Res.21(5), 31 (2011). (IF: 0.32)10.3740/MRSK.2011.21.5.268
42 “GaAs-Carbon Nanotubes Nanocomposite: Synthesis and Field-Emission Property” Kor. J. Mater. Res.20(4)199-203 (2010).10.3740/MRSK.2010.20.4.199 (IF: 0.32) (Citation:2)
43 “The effect of Codopping of Be and Mg on incorporation of Mn in GaAs” Kor. J. Mater. Res.18 (8) 444-449 (2008). (IF: 0.32) 10.3740/MRSK.2008.18.8.444
44 “Anisotropy of magnetoresistance in Be Co-doped GaMnAs” Journal of and Magnetic Materials,321,709- 711(2009).10.1016/j.jmmm.2008.11.031. (IF:2.993)