Dr. P. V. Chandrasekar
Qualification : Ph.D. (Chungnam National University)
Designation : Assoc. Professor
Details of Educational Qualification:
Course | Specialization | Group | College Name/University | Year of Passing |
---|---|---|---|---|
Post Doctoral Fellow | Perovskite Quantum dots, Photodetectors | Physics | Beijing Institute of Technology, P.R.China | 2017 - 2020 |
Research Associate | Quantum dots, 2D materials | Information Engineering & Science | Fuzhou University, P.R.China | 2016 - 2017 |
Post Doctoral Fellow | Quantum dots, 2D materials | Information Engineering & Science | Fuzhou University, P.R.China | 2013 - 2015 |
Ph.D. | Materials Engineering | Materials Science | Chungnam National University, South Korea | 2011 |
M.Sc. | Physics | Physics | Bharathiar University | 2002 |
B.Sc. | Physics | Physics | Madurai Kamaraj University | 2000 |
List of Publications
S.No | Title of the Paper | Full Details of Journal Name / Conference Name, Volume number, page number, Date |
---|---|---|
1 | Solution-processed, ultrasensitive, high current density vertical phototransistor using porous carbon nanotube electrode” | Applied Surface Science 680, 161414 (2025). https://doi.org/10.1016/j.apsusc.2024.161414 (IF:6.3) |
2 | Monolithically grown CSPbBr3 by chemical vapor deposition for Self-Powered photodetector” | Chemical Engineering Journal 492 (2024) 152213. https://doi.org/10.1016/j.cej.2024.152213 (IF: 15.1) |
3 | “Bi2Se3 nanosheets prepared by solvothermal method for high performance NIR photodetector” | Colloids and Surfaces A:Physicochemical Engineering and Aspects, 694, 134090, 2024, DOI: https://doi.org/10.1016/j.colsurfa.2024.134090 (IF: 4.9) |
4 | Aqueous-Phase Formation of Two- Dimensional PbI2 Nanoplates for High-Performance Self-Powered Photodetectors” | Micromachines, 14(10), 1949, (2023). https://doi.org/10.3390/mi14101949 |
5 | “Editorial: Recent developments in Si-based materials and devices” | Frontiers in physics, 11, (2023). doi: 10.3389/fphy.2023.1272399 |
6 | “Photoelectric properties of antimony selenide nanowires prepared by hydrothermal method” | Colloids and Surfaces A:Physicochemical and Engineering Aspects, 674,(2023) 131889. (IF:5.2) https://doi.org/10.1016/j.colsurfa.2023.131889 |
7 | “Dramatic increase in SWIR detection for GeSn strip detector with graphene hybrid structure” | Journal of Alloys and Compounds, 945, 169287 (2023). DOI:10.1016/j.jallcom.2023.169287 (IF:6.37) |
8 | “A review on III–V compound semiconductor short wave infrared avalanche photodiodes” | Nanotechnology 33 222003 (2022).DOI: 10.1088/1361- 6528/ac5442 (Citation:1, IF: 3.87) |
9 | “Lead–halide perovskites for next-generation self-powered photodetectors: a comprehensive review” | Photonic Research , 9 (6), 968-991 (2021).DOI: 10.1364/PRJ.418450 (Citation:33, IF:7.08) |
10 | “Fabrication of graphene: CdSe quantum dots/CdSnanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics” | Nanotechnology, 32 (31) 315204 (2021).DOI: 10.1088/1361-6528/abf87a (Citation:6, IF: 3.872) |
11 | “Solution-Processed, Self- Powered Broadband CH3NH3PbI3 Photodetectors Driven by Asymmetric Electrodes” | Advanced Optical materials, 8, 2000215 (2020).DOI: 10.1002/adom.202000215 (Citation:24, IF: 10.05) |
12 | “Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures” | Journal of materials Science & technology, 68, 216-226 (2020)DOI:https://doi.org/10.1016/j.jmst.2020.06.047 (Citation:19, IF:10.319) |
13 | “CsPbI3nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors” | Journal of materials Science & technology (2020). DOI: https://doi.org/10.1016/j.jmst.2020.07.049 (Citation:11, IF: 10.319) |
14 | “porous single wall carbon nanotube templates decorated with inorganic perovskite nanocrystals for flexible photodetectors” | ACS Applied Nanomaterials, 3, 1, 459-467 (2020).DOI:https://doi.org/10.1021/acsanm.9b02051 (Citation:15, IF: 6.14) |
15 | Surface Engineering of All-Inorganic Perovskite Quantum Dots with Quasi Core−Shell Technique for High-Performance Photodetectors. | Advanced materials &Interfaces n/a, (2020) 2000360.DOI:10.1002/admi.202000360 (Citation:14, IF:6.389) |
16 | “A facile method to synthesize two- dimensional CsPb2Br5 nano-/micro-sheets for high-performance solution- processed photodetectors” | Journal of Alloys and compounds, 824, 153970 (2020).DOI: https://doi.org/10.1016/j.jallcom.2020.153970 (Citation:15,IF: 6.371) |
17 | “Flexible memristive device based on WSe2quantum dots sandwiched between two poly (methyl methacrylate) layers” | IEEE Electron Device Letters ,40(7) 1088-1091, 2019 DOI:10.1109/LED.2019.2918701 (Citation:5, IF:4.187) |
18 | “Solution-phase, template-free synthesis of PbI2 and MAPbI3 nano/microtubes for high-sensitivity photodetectors” | Nanoscale,11, 5188-5196,2019.DOI:10.1039/C9NR00452A (Citation:21, IF:8.307) |
19 | ” Highly flexible memristive devices based on MoS2quantum dots sandwiched between PMSSQ layers” | Dalton Transactions, 48, 2422-2429, 2019,DOI: 10.1039/C8DT04593C. (Citation:14, IF: 4.56) |
20 | “One-step method to synthesize CH3NH3PbI3:MoS2nanohybrids for high-performance solution processed photodetectors in visible region” | Nanotechnology 30 (2019) 085707 https://doi.org/10.1088/1361-6528/aaf608 (Citation:9, IF: 3.872) |
21 | “Interlayer of PMMA doped with Au nanoparticles for high-performance tandem photodetectors: a solution to suppress dark current and maintain high photocurrent” | ACS Applied materials & Interfaces,12, 23, 26153–26160 (2020). DOI: 10.1021/acsami.0c04093 (Citation:20, IF:10.38) |
22 | ” Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors” | Nanotechnology (2020) (Accepted).DOI: 10.1088/1361-6528/ab7de7(Citation:7, IF: 3.872) |
23 | “Ultra-sensitive solution-processed broadband photodetectors based on vertical field-effect transistor” | Nanotechnology,31,(2019) 105203.DOI:10.1088/1361- 6528/ab5a26 (Citation:12, IF: 3.872) |
24 | “All-solution-processed UV-IR broadband trilayer photodetectors with CsPbBr3 colloidal nanocrystals as carriers-extracting layer” | Nanotechnology , 31 (16)165502(2019).DOI:http://iopscience.iop.org/10.1088/1361- 6528/ab667b (Citation:12, IF: 3.872) |
25 | “High Performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer” | Nanotechnology, 30,465203(2019) 。DOI:10.1088/1361-6528/ab3b7a (Citation: 18, IF: 3.872) |
26 | ”structural, optical and photoconductivity characteritics of wet chemically grown flower like ZnOthinfilm nanostructures on SiO2/Si substrate” | Journal of materials science: materials in electronics 28(19):1-6(2017) 10.1007/s10854-017-7290-y (Citation:2, IF:2.478) |
27 | “Enhanced field emission properties of Molybdenum disulphidenanosheets synthesized by hydrothermal method” | Applied Surface science,389,1017-1022(2016) https://doi.org/10.1016/j.apsusc.2016.08.031 (Citation:80, IF: 6.707) |
28 | “One pot hydrothermal synthesis of graphene like MoS2nanosheets for high performance lithium ion batteries” | RSC Advances, 5, 57666-57670 (2015).10.1039/C5RA07478A (Citation:30, IF: 4.036) |
29 | ”GaNnanorod synthesis on single wall carbon nanotube bundles via substrate confinement” | CrysEnggComm,14, 2166- 2171(2012).10.1039/C2CE06557F (Citation:7, IF:3.545) |
30 | “Structural and Field Emission Properties of GaN–SWCNT nanocomposites” | Journal of The Electrochemical Society,157 (12) J 415-J418 (2010).10.1149/1.3497352(Citation:3, IF: 4.316) |
31 | “A facile synthesis of CH3NH3PbBr3 perovskite quantum dots and their application in flexible nonvolatile memory” | Applied Physics Letters, 110, 083102 (2017).https://doi.org/10.1063/1.4976709 (Citation:75, IF: 3.816) |
32 | “All-solution processed semi-transparent perovskite solar cells with silver nanowireselectrodes” | Nanotechnology,27(9):095202 (2016).http://dx.doi.org/10.1088/0957-4484/27/9/095202 (Citation:40, IF: 3.872) |
33 | ” Inkjet-Printed photodetector arrays based on hybrid perovskite CH3NH3PbI3Micriwires” | ACS Appl.Mater.Interfaces 9 (13), pp 11662–11668 (2017).DOI:10.1021/acsami.7b01379 (Citation:57, IF:10.38) |
34 | ”Solution-processed flexible blue organic light emitting diodes using graphene anode” | Vacuum, 121, 70-74 (2015).https://doi.org/10.1016/j.vacuum.2015.07.020 (Citation:5, IF: 2.751) |
35 | “Ferroelectric, dielectric, and optical properties of Nd-substituted Bi4Ti3O12 nanoparticles synthesized by sol-gel method” | Progress in Natural Science: Materials International. 26 (7) 528-532 (2016).https://doi.org/10.1016/j.pnsc.2016.11.001 (Citation:19, IF: 3.607) |
36 | “Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode” | Applied surface science,369, 308-313(2016).10.1016/j.apsusc.2016.02.104 (Citation:20, IF:6.707) |
37 | “Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching” | Scientific reports 5 : 9034-1-9034-7 (2015) | DOI: 10.1038/srep09034 (Citation:19, IF: 4.379) |
38 | “Transparent and flexible non volatile memory using poly (methylsilsesquioxane) dielectric embedded with cadmium selenide quantum dots” | Jap, J, Appl,Phys, 53, 125001-1-12500-4 (2014).10.7567/jjap.53.125001 (Citation:10, IF: 1.491) |
39 | “ Effect of substrate on electroplated copper sulphide thin films” | Journal of materials science: Materials in Electronics, 25 (12) 5338-5344(2015).10.1007/s10854- 014-2310-7(Citation:25, IF: 2.478) |
40 | “Growth and Characterization of Electroplated NiO Coatings” | Journal of New Materials For Electrochemical Systems, 17 (3) 173-177(2014).10.14447/jnmes.v17i3.418 (Citation:0) |
41 | “Studies on Electrodeposited NiS Thin Films” | Journal of New Materials For Electrochemical Systems, 17(3) 167 (2014).10.14447/jnmes.v17i3.417(Citation:3) |
42 | “Highly dispersed Cu(II) and Ni (II) catalysts covalently immobilized on imine modified silica for cyclohexane oxidation with hydrogen peroxide” | RSC Advances, 4, 24820 (2014).10.1039/C4RA01960A (Citation:48, IF: 4.036) |
43 | ”Organic–inorganic hybrid catalysts containing newSchiffbase for environment friendly cyclohexaneoxidation” | RSC Advances, 4, 42816-42824, (2014).10.1039/C4RA08303B (Citation:26, IF: 4.036) |
44 | “Growth and characterization of GaN on sapphire and porous SWCNT using single molecular precursor” | Kor. J. Mater. Res.21(5), 31 (2011). (IF: 0.32)10.3740/MRSK.2011.21.5.268 |
45 | “GaAs-Carbon Nanotubes Nanocomposite: Synthesis and Field-Emission Property” | Kor. J. Mater. Res.20(4)199-203 (2010).10.3740/MRSK.2010.20.4.199 (IF: 0.32) (Citation:2) |
46 | “The effect of Codopping of Be and Mg on incorporation of Mn in GaAs” | Kor. J. Mater. Res.18 (8) 444-449 (2008). (IF: 0.32) 10.3740/MRSK.2008.18.8.444 |
47 | “Anisotropy of magnetoresistance in Be Co-doped GaMnAs” | Journal of and Magnetic Materials,321,709- 711(2009).10.1016/j.jmmm.2008.11.031. (IF:2.993) |
Book Chapters
- “Lead Halide Perovskite-Based Photodetectors” Chapter 4 in book “Types of Photodetectors and their Applications” Publisher: Nova Science Publishers, Editors: Sunil Singh Kushvaha, Vidya Nand Singh. ISBN: 978-1-68507-663-4, 2022.