Admissions
Madanapalle Institute of Technology & Science is now MITS Deemed to be University.
Dr. Alok Barik

Qualification : Ph.D. (NIT, Rourkela)

Designation : Asst. Professor

Email: [email protected]

Details of Educational Qualification:

Course Specialization Branch Institute / University Year of Passing
Ph.D. Experimental Condensed Matter Physics Physics National Institute of Technology, Rourkela 2023
M.Phil Nuclear Physics Physics Sambalpur University 2016
M.Sc. Nuclear Physics M.Sc. Sambalpur University 2013
B.Sc. Physics, Chemistry & Mathematics B.Sc. Sambalpur University 2011

 

Research Areas: 

  • Experimental Condensed Matter Physics and Materials Science

 

Research Identifiers: 

 

Publication Details:

S.No Publication Affiliation  Academic Year Author Position Full Details of Research Publication Indexing Article/ Conference/ Book/ Book Chapter Journal Quartile (Q1/Q2/Q3/Q4)
1 MITS 2024 2 “Critical exponent study of the hexagonal Sr1-xBixFe12O19 compound”, J. Alloys Compd. 1021, 179532 (2025), IF-6.3, Q1, https://doi.org/10.1016/j.jallcom.2025.179532  SCI Article Q1
2 Others 2024 2 “Investigation of Structural Changes in Bismuth Substituted SrFe12O19 Compound Using In-Situ Raman Spectroscopy”, J. Cond. Matt. 02 (02), 110-113 (2024), https://doi.org/10.61343/jcm.v2i02.109 Scopus Conference Proceedings None
3 Others 2024 5 “Above room temperature multiferroic and magnetoelectric properties of (1-Φ) PZTFT-Φ CZFMO particulate composites”, J. Am. Ceram. Soc. 108, e20268 (2024), IF-3.8, Q1,  https://doi.org/10.1111/jace.20268 SCI Article Q1
4 Others 2024 2 “Tuning the Magnetic and Electrical Properties of LaYFe2O6 by Mn Substitution”, J. Supercond. Nov. Magn. 37, 1257–1268, (2024), IF-1.7, Q3,  https://doi.org/10.1007/s10948-024-06770-1 SCI Article Q3
5 Others 2024 6 “Enhanced polishing characteristics of Al-6061 via composite magnetic abrasives (EIP–Al2O3) assisted hybrid CMMRF process”, Wear 205528, 556-557, (2024), IF-6.1, Q1, https://doi.org/10.1016/j.wear.2024.205528 SCI Article Q1
6 Others 2024 2 “Extrinsic Effects on the Impedance Spectra of LaYFe2O6”, JMEPEG 33, 5340–5347 (2024), IF-2.3, Q2, https://doi.org/10.1007/s11665-023-08840-2 SCI Article Q2
7 Others 2024 3 “Sm substitution induced spin reorientation and stabilization of double perovskite structure resulting in enhanced magnetoelectricity in LaYFe2O6”, J. Appl. Phys.  135, 104101 (2024), IF-2.7, Q2, https://doi.org/10.1063/5.0179678 SCI Article Q2
8 Others 2023 2 “Energy-harvesting performance in a LaYFe2O6/P(VDF-HFP) nanocomposite by boosting the magnetoelectric effect”, ACS Appl. Nano Mater. 6, 6841−6848 (2023), IF-5.5, Q1,   https://doi.org/10.1021/acsanm.3c00557 SCI Article Q1
9 Others 2023 2 “Manganese substitution induced magnetic transformation and magnetoelectricity in SrFe12O19’’, Phys. Chem. Chem. Phys. 25, 2386 (2023), IF-2.9, Q2, https://DOI: 10.1039/d2cp03057h SCI Article Q2
10 Others 2022 2 “Display of direct and converse magnetoelectric effect in double perovskite YLaFe2O6”, J. Appl. Phys.  132, 224107 (2022), IF-2.7, Q2, https://doi.org/10.1063/5.0123357 SCI Article Q2
11 Others 2022 1 “Towards room-temperature and above magnetoelectricity in CoFe2O4/Cr2O3 core/shell nanoparticles”, J. Phys. D: Appl. Phys. 55, 345001 (2022), IF-3.1, Q1, https://doi.org/10.1088/1361-6463/ac73c3 SCI Article Q1
12 Others 2022 2 “Magnetic and electrical transport studies of polycrystalline Sr1-xBixFe12O19”, J. Phys. D: Appl. Phys. 55, 265001 (2022), IF-3.1, Q1,  https://doi.org/10.1088/1361-6463/ac5a8d SCI Article Q1
13 Others 2020 1 “Indication of above-room temperature magnetoelectricity in CoFe2O4/Cr2O3 nanocomposite”, J. Magn. Magn. Mater. 495, 165880 (2020), IF-3, Q2, https://doi.org/10.1016/j.jmmm.2019.165880 SCI Article Q2
14 Others 2020 4 “Effect of crystal symmetries and phase boundaries on the magnetoelectricity of La2NiMnO6 prepared under ambient conditions”, J. Appl. Phys. 127, 214101 (2020), IF-2.7, Q2, https://doi.org/10.1063/5.0003395 SCI Article Q2
15 Others 2020 4 “La2NiMnO6/poly(vinylidene fluoride) nanocomposites with enhanced magnetoelectric voltage”, J. Appl. Phys. 127, 134103 (2020), IF-2.7, Q2, https://doi.org/10.1063/1.5140710 SCI Article Q2
16 Others 2020 2 “Enhanced magnetoelectricity in bismuth substituted SrFe12O19 hexaferrite”, J. Appl. Phys.  126, 074104 (2019), IF-2.7, Q2, https://doi.org/10.1063/1.5095979 SCI Article Q2
17 Others 2018 4 “Magnetoresistance in CoFe2O4/BiFeO3 core-shell nanoparticles near room temperature”, J. Appl. Phys. 124, 15414 (2018), IF-2.7, Q2, https://doi.org/10.1063/1.5031170 SCI Article Q2
18 Others 2018 4 “Study of magnetization and magnetoelectricity in CoFe2O4/BiFeO3 core-shell composites”, J. Appl. Phys. 123, 064101 (2018), IF-2.7, Q2, https://doi.org/10.1063/1.5008542 SCI Article Q2
19 Others 2017 4 “Magnetoelectricity in La2NiMnO6 and its PVDF impregnated derivative”, J. Appl. Phys. 124, 044101 (2018), IF-2.7, Q2, https://doi.org/10.1063/1.5037736 SCI Article Q2
20 Others 2024 4 “Measurement of temperature-dependent magnetoelectricity in BiFe(1-x)CoxO3; x = 0, 0.01, 0.02”, J. Alloys Compd. 709, 158 (2017), IF-6.3, Q1, http://dx.doi.org/10.1016/j.jallcom.2017.03.118 SCI Article Q1
21 Others 2024 2 “Cobalt substitution effect on structural and magnetic property of Barium hexaferrite”, AIP Conf. Proc. 2995, 020154 (2024). https://doi.org/10.1063/5.0178151 Scopus Conference Proceedings None
22 Others 2024 2 “Investigation of structural and magnetic properties of Sm Substituted LaYFe2O6”, AIP Conf. Proc. 2995, 020156 (2024). https://doi.org/10.1063/5.0178152 Scopus Conference Proceedings None
23 Others 2020 1  “Investigation of cation distributions and temperature-dependent magnetic properties of polycrystalline CoFe2O4”, AIP Conf. Proc. 2265, 030533 (2020). https://doi.org/10.1063/5.0017171 Scopus Conference Proceedings None
24 Others 2020 2 “Evolution of structural and magnetic property of Mn-doped barium hexaferrite”, AIP Conf. Proc. 2265, 030510 (2020). https://doi.org/10.1063/5.0017154 Scopus Conference Proceedings None
25 Others 2020 5 “Investigation of magnetoelectricity in La2NiMnO6 thin film deposited by pulsed laser deposition”, AIP Conf. Proc. 2265, 030297 (2020). https://doi.org/10.1063/5.0017571 Scopus Conference Proceedings None
26 Others 2019 1 “Signature of magnetoelectric coupling in CoFe2O4/Cr2O3 nanocomposites”, AIP Conf. Proc. 2115, 030528 (2019). https://doi.org/10.1063/1.5113367 Scopus Conference Proceedings None
27 Others 2019 4 “PVDF impregnated La2NiMnO6 as a new form of magnetoelectric materials”, AIP Conf. Proc. 2115, 030070 (2019). https://doi.org/10.1063/1.5112909 Scopus Conference Proceedings None
28 Others 2019 4 “Magnetic proximity effect in CoFe2O4 @ BiFeO3 core-shell nanoparticles”, AIP Conf. Proc. 2115, 030509 (2019). https://doi.org/10.1063/1.5113348 Scopus Conference Proceedings None
29 Others 2018 4 “Effect of bismuth substitution in strontium hexaferrite”, AIP Conf. Proc. 1953, 030237 (2018). https://doi.org/10.1063/1.5032572 Scopus Conference Proceedings None
30 Others 2018 4 “An unconventional magnetoresistance in CoFe2O4 core-BiFeO3 shell composite”, AIP Conf. Proc. 1942, 110030 (2018). https://doi.org/10.1063/1.5029013     Scopus Conference Proceedings None
31 Others 2018 4 “Effect of Disappearance of Rhombohedral Phase on The Dielectric Properties of Novel BiFe1- xCoxO3”, AIP Conf. Proc. 1942, 110044 (2018). https://doi.org/10.1063/1.5029027 Scopus Conference Proceedings None
32 Others 2017 4 “Effect of Sintering Time on the Phase Evolution of Biphasic La2NiMnO6”, AIP Conf. Proc. 1832, 140034 (2017). http://dx.doi.org/10.1063/1.4980816 Scopus Conference Proceedings None
33 Others 2017 4 “Setup for magnetoelectric measurement in a wide temperature range”, AIP Conf. Proc. 1832, 060009 (2017). http://dx.doi.org/10.1063/1.4980414 Scopus Conference Proceedings None