Hall Ticket No:						Question Paper Code: 18MATP114

MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MADANAPALLE

(UGC-AUTONOMOUS)

MCA I Year II Semester (R18) Supplementary End Semester Examinations, August - 2023 PROBABILITY & STATISTICS

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

In Q.no 1 to 5 answer either A or B only

Q.No	Question	Marks	СО	BL
Q.1(A)	(i) Define Conditional probability. State and prove multiplication rule.	12M	1	2
	(ii) When a computer goes down, there is a 75% chance that it is due to an overload and a 15% chance that is due to software problem. There is an 85% chance that it is due to an overload or a software problem. What is the probability that both of these problems are at fault? What is the probability that there is a software problem but no overload?			
Q.1(B)	OR (i) Define distribution function or cumulative distribution in discrete case	12M	1	2
	and its properties.	12111	_	2
	(ii) If $E(X) = 3$, $E(X^2) = 25$ then find (i) $E(3X - 8)$ (ii) $V(X)$ (iii) $V(3X + 8)$			
Q.2(A)	The joint density for (X, Y) is given by $f(x, y) = x y e^{-x} e^{-y}$, $x > 0$, $y > 0$ (i) Find the marginal densities for X and Y . (ii) Cov (X,Y) (iii) Are X and Y independent? (iv) Find $P(X \le 1)$.	12M	2	3
Q.2(B)	OR (a) Let X be a random variable with density $f_x(x) = 2x$, $0 < x < 1$.	1214	2	2
(-)	IF f (x)=Y=3x+6 then find $f_y(y)$.	12M	2	3
	(b) Let X be a random variable with density $f_x(x) = \frac{1}{4}xe^{-\frac{x}{2}}$, $x \ge 0$ and let			
	$y = -\frac{1}{2}x + 2$. Find the density for y.			
Q.3(A)	The spontaneous flipping of a bit stored in a computer memory is called a "Soft fail". Let X denote the time in millions of hours before the first soft fail is observed. Suppose the density for X is given by $f(x) = e^{-x}$; $x > 0$.	12M	3	3
	Find the moment generating function, mean and variance. OR			
Q.3(B)	Let X denote the time in hours needed to locate and correct the problem in the software that governs the timing of traffic lights in the down town area of a large city. Assume that X is normally distributed with mean 10 hours and variance 9.	12M	3	3
	 a) Find the probability that the next problem will require at most 15 hours to find and correct. b) The fastest 5% of repairs take at most how many hours to complete. 			

							7	
Q.4(A)					wiring. In testing 1- meter (in inches) of	12M	4	
	1.281	1.288	1.292	1.289	1.291			
	1.293	1.293	1.291	1.289	1.288			
	1.287	1.291	1.290	1.286	1.289	7		
	1.286	1.295	1.296	1.291	1.286			
	Assume that sam							
			confidence	interval on	the mean outside			
	diameter of pipes o	of this type.						
(-)		f		OR		4284		2
Q.4(B)	In 1980 the Bureau	12M	4	3				
	injuries received by of the workers invo							
	injury. It also reve							
	prevented through							
	current conditions		22					
	those encountered							
	a) Find a							
					t will not be wearing			
	, .		ne time of th					
					portion of minor eye			
	•	_	•	-	evented through the			
0.5(4)			ctive eyewe		Control of the control	1214		
Q.5(A)					lisease and observe	12M	5	4
	the number of days such patient takes to recover. The results are as							
	follows (recovery t	time in day:	s):					
			Treatment	+				
		1		4				
		_		20				
		B 1	1 15 17	21				
	Do	octor C 9	12 16	19				

		Treatment			
		1	2	3	4
	Α	10	14	19	20
	В	11	15	17	21
Doctor	С	9	12	16	19
	D	8	13	17	20

By shifting the origin to 15, discuss the difference between (i) doctors and (b) treatments.

OR

5

12M

The following data resulted from an experiment to compare three Q.5(B) burners B₁, B₂ and B₃. A Latin square design was used as the tests were made on three engines and were spread over 3 days.

	Engine 1	Engine 2	Engine 3
Day 1	B ₁ -16	B ₂ -17	B ₃ -20
Day 2	B ₂ -16	$B_{3}-21$	B ₁ -15
Day 3	B ₂ -15	B ₁ -12	B ₂ -13

By changing the origin to 16 for simplification in numerical computation, test the hypothesis that there is no difference between the burners.

*** END***